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Simple passive scalar advection-diffusion model

Scott Wunsch*
The James Franck Institute, The University of Chicago, 5640 South Ellis, Chicago, Illinois 60637

~Received 11 March 1998!

This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model
exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The
model provides a simple computational test for recent ideas regarding closure and scaling for randomly
advected passive scalars. Results suggest that high order structure function scaling depends on the largest
velocity eddy size, and hence scaling exponents may be geometry dependent and nonuniversal.
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I. INTRODUCTION

There has been much interest in the problem of a r
domly advected passive scalar since Kraichnan first propo
a solution for the structure functions that exhibit anomalo
scaling @1#. The passive scalarT is governed by the usua
equation,

S ]

]t
1u~x,t !•“ DT~x,t !5D¹2T~x,t !1F~x,t !, ~1!

in which D is a diffusion constant andF is an external forc-
ing. If the velocity field is incompressible (¹•u50) and the
correlation time is extremely short, the equal time struct
functions formed from different powersn of the scalar dif-
ferences, defined as

Sn~r ![^@T~x1r ,t !2T~x,t !#n& ~2!

obey equations of the form

L@Sn#5Jn1Fn ~3!

in whichL is the Richardson eddy-diffusivity operator,Fn is
a forcing term, andJn is a dissipative term for which an
ansatz must be made for closure. In@2#, closure was obtained
by postulating that the conditional probability of the diffe
ence of the Laplacians of the passive scalar at two poin
proportional to the difference in the passive scalar val
between the points. This leads to even-order structure fu
tions S2n(r ), which scale withr , but with scaling indices
that are nonlinear functions ofn. However, these result
have been challenged by others using different technique
obtain scaling indices in certain limits using perturbati
methods @3–6#. A review of the situation is given by
Shraiman and Siggia@7#.

In this paper I study a model for a passive scalar in o
dimension in which the structure functionsSn obey statistical
equations with the same form, but with a different eddy d
fusivity operatorL. The structure functions exhibit scalin
becauseL is still a scaling operator~by design!. The model
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was previously proposed by myself and others@8#, and is
based on the linear eddy model of Kerstein@9#. Restricting
the model to one dimension makes it possible to numeric
study a large range of length scales. The model produ
mixing by randomly rearranging the scalar in such a way
to induce scaling in the structure functions. Because the p
posed closure of theJn term in @2# is nothing more than a
truncation of the Taylor expansion of the conditional pro
ability, it should be valid~if it is valid! regardless of the form
of the operatorL.

II. A SIMPLE ONE-DIMENSIONAL MODEL

The principal goal of this paper is to develop a model th
is simple enough computationally to permit a large inert
range; hence a one-dimensional scalar field is prefera
However, a one-dimensional incompressible velocity fie
would be quite dull, so we are forced to choose some ot
form of mixing that preserves the conservation laws that
the hallmark of incompressibility. Any model in which th
advection simply rearranges the scalar field meets these
quirements, but such advection is necessarily nonlocal.

The motivation for the particular model I used is deve
oped as follows: Imagine that the one-dimensional sca
field is embedded in a plane. The convection consists o
large eddy in that plane, centered on the scalar field, wh
rotates one-half turn. This maps the scalar fieldT(x) onto
itself, according to the rule

T~x!→T~L2x!, ~4!

whereL is the eddy size~centered onx5 1
2 L!. Applying one

of these eddies in each time stept, with randomly chosen
size and position, along with diffusion, gives a rule for a
vancing the state of the passive scalar by one time step,

T~x,t!5T~x,0!1V@T~x,0!#1Dt]x
2T~x,0! ~5!

in which the advection operatorV@T# is

V@T~x!#[H T~2x01L2x!2T~x! if x0<x<x01L,

0 otherwise.
~6!
5757 © 1998 The American Physical Society
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The model consists of applying this rule many times, w
the sizeL and positionx0 chosen randomly at each step fro
appropriate PDFs. All possiblex0 in the system have equa
probability, but the eddy sizesL are chosen according to
scaling law with scaling indexy

P~L !dL5CL2ydL, ~7!

which generates the scaling behavior within an inertial ra
determined by the smallest and largest possible values oL:
L0,L,Lm . The ratio of length scalesLm /L0 plays the role
of the Peclet number in this model.

To maintain a state of statistical equilibrium, some fo
ing is required. In this model, the forcing is done by impo
ing an overall gradientg on the scalar, as in@4#. A new
variableu is then defined by the deviation from the gradie
-

ll
e

e

-
-

,

u~x![T~x!2gx ~8!

and structure functions are defined in terms ofu.

III. STRUCTURE FUNCTIONS

A. Structure function equations

I now proceed to determine the analog of the edd
diffusivity operatorL for this model, along with the forcing
function. The scalar differenceD(x,y)[u(x)2u(y) obeys
the equation

D~x,y;t!5Dt~]x
21]y

2!D~x,y;0!1C@D~x,y;0!# ~9!

when time is advanced by one unitt. The action of the
convective termC on D depends on whetherx or y ~or both!
lie within the eddy:
C@D~x,y!#[5
D~x,y! x,y¹@x0 ,x01L#

D~2x01L2x,y!1g~L12x022x! xP@x0 ,x01L#,

y¹@x0 ,x01L#

D~x,2x01L2y!2g~L12x022y! x¹@x0 ,x01L#,

yP@x0 ,x01L#

D~2x01L2x,2x01L2y!22g~x2y! x,yP@x0 ,x01L#.

~10!
s

(
-

o

Raising this equation to thenth power and taking the en
semble average gives

Sn~x2y;t!5^Cn@D~x,y;0!#&

1nDt^Cn21@D~x,y;0!#~]x
21]y

2!D~x,y;0!&

1¯ ~11!

keeping only the lowest order term inDt. In the diffusive
term, we can replaceC@D# with D, because only a sma
portion of the scalar field lies within the eddy at that tim
step~the eddy is another higher order correction!. Then the
equation becomes

Sn~x2y;t!5^Cn@D~x,y;0!#&1Jn~x,y;0!, ~12!

where
Jn~x,y![nDt^D~x,y!n21~]x
21]y

2!D~x,y!& ~13!

as in @1#. The quantity^Cn@D(x,y;0)#& can be computed
from the definition ofC by integrating over the eddy PDF
for x0 andL. Defining the difference variabler[x2y, the
result divides into three regions: a dissipative intervalr
<L0), the inertial range (L0<r<Lm), and a large scale re
gion (r>Lm). The structure functions obey the equation

L„Sn~r ,t!2Sn~r ,0!…1L@Sn~r ,0!#

5LJn~r ,0!1Fn~r ,0!, ~14!

where L is the system size. In statistical equilibrium
Sn(r ,t)5Sn(r ,0), and this equation is identical in form t
Eq. ~3!. The eddy-diffusivity operatorL and the source
Fn(r ) differ according to the value ofr . For r<L0 , they are
L@S~r !#[2E
L0

Lm
P~L !dLH E

L2r

L1r

dzS~z!2~r 1L !S~r !2~r 2L !S~2r !J , ~15!

Fn~r ![ (
m51

n
gmn!

m! ~n2m!! EL0

Lm
P~L !dLH E

L2r

L1r

dzSn2m~z!~z2r !m1~L2r !Sn2m~2r !~22r !mJ . ~16!

In the inertial range,L0<r<Lm , they are

L@S~r !#[2E
L0

r

P~L !dLH E
r 2L

r 1L

dzS~z!22LS~r !J 2E
r

Lm
P~L !dLH E

L2r

L1r

dzS~z!2~r 1L !S~r !2~r 2L !S~2r !J , ~17!
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Fn~r ![ (
m51

n
gmn!

m! ~n2m!! H EL0

r

P~L !dLE
r 2L

r 1L

dzSn2m~z!~z2r !m

1E
r

Lm
P~L !dLS E

L2r

L1r

dzSn2m~z!~z2r !m1~L2r !Sn2m~2r !~22r !mD J . ~18!

In the large scale region,r>Lm , they are

L@S~r !#[2E
L0

Lm
P~L !dLH E

r 2L

r 1L

dzS~z!22LS~r !J , ~19!

Fn~r ![ (
m51

n
gmn!

m! ~n2m!! EL0

Lm
P~L !dLH E

r 2L

r 1L

dzSn2m~z!~z2r !mJ . ~20!
-
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B. Solution for S2„r …

The first order structure functionS1 vanishes, so the low
est nontrivial structure function isS2 . It can be determined
approximately in both the inertial and dissipative ranges.
a first step, it is necessary to rewriteJ2 by commuting de-
rivatives and using spatial homogeneity:

J252Dt^D~]x
21]y

2!D&

52Dt] r
2S224Dt^~]xu!2&, ~21!

whereDt^(]xu)2& is the mean-square dissipation of the sc
lar ~a constant!. This constant can be evaluated by looking
the large scale region~whereS2 must approach a constan!
and balancing it with the forcing termF25 2

3 g2^L3&, so that

^~]xu!2&5
1

6

^L3&
DtL

g2. ~22!

This result serves as a check on the accuracy of nume
simulations.

The solution far into the dissipative region (r !L0) can
then be evaluated by neglecting bothL and F ~setting J2
50!:

S2~r !>^~]xu!2&r 25
1

6

^L3&
DtL

~gr !2. ~23!

In the inertial range, the approximate solution is found
balancing the convective termL against the dissipation term
J2>24Dt(^]xu)2&:

L@S2~r !#>2 2
3 ^L3&g2. ~24!

By assuming a scaling solution,S2(r )5A2r r2, the convec-
tive term becomes

L@A2r r2#>2
A2L0

y

y21
I ~r2 ,y!r 21r22y ~25!

in the limits L0 /r→0 and r /Lm→0. The definite integral
I (r,y) is defined as
s

-
t

al

y

I ~r,y![
1

11r H E
0

1 dz

zy @~11z!11r2~12z!11r

22~11r!z#1E
0

1 dz

z31r2y @~11z!11r

2~12z!11r22~11r!z11r#J ~26!

and can be evaluated numerically. The first integral inI di-
verges at the lower limit fory.3, setting an upper limit on
the scaling range.~For y.3 the lower limit must be replaced
by L0 /r , and the ultraviolet region determines the solutio!
Since this term balances a constant, the scaling is fixe
r25y22 ~which only makes sense fory.2! and the solu-
tion is

S2~r !5
2

3

~gLm!2

~22r2!I ~r2 ,y! S r

Lm
D r2

, ~27!

where I have evaluated̂L3& explicitly.
These solutions forS2 compare very well with the nu-

merical results in both the inertial and dissipative ranges~see
Fig. 1!.

C. Inertial range scaling for even-order structure functions

In the inertial range, the scaling of higher even-ord
structure functions is determined in the same way asS2 :

L@S2n~r !#>J2n~r !. ~28!

The closure assumption forJ2n made in@1# is that

J2n~r !5nCnJ2

S2n

S2
~29!

with Cn51. The generalized form withCnÞ1 was sug-
gested in@10#. Assuming scaling functions forS2n with in-
dicesr2n , leads to the result that the scaling indices sati

I ~r2n ,y!5nCnI ~r2 ,y!. ~30!

This result can be used~in principle! to evaluateCn given
numerically measuredr2n . Unfortunately, the sensitivity of



th

he

he
r
ve
ly
ar

rg
t

ca

m

o

ec
an
a

e in
r
tial

ed
sh

he
d
al-
ion
nite
en-
c-
a

pu-
ab-

g

rid
e
e

he
t

size

ge
e

on

-

n a

t

5760 PRE 58SCOTT WUNSCH
I to r prevents this from being very accurate. However,
numerical results for the exponents andCn ~measured inde-
pendently! are consistent with this result, indicating that t
scaling is indeed set by balancing the convective termL
against the dissipation termJ2n .

D. Odd-order structure functions

Odd-order structure functions exhibit scaling only in t
dissipative range. Because the eddy-diffusivity operatoL
differs depending on whether it operates on an odd or e
function of r , the inertial range scaling solution exists on
for even-order structure functions. Odd-order functions
positive scaling functions at smallr , but pass through zero in
the inertial range and then approach zero from below at la
r . This behavior of the odd structure functions is peculiar
this particular model and differs from physical passive s
lars.

E. Dissipation range scaling

At small enough length scales the dissipative terms do
nate the scaling. In this~dissipative! range theJn term domi-
nates the solution. It is convenient to rewrite it as

Jn~r !52Dt] r
2Sn~r !2n~n21!Dt

3^Dn22@~]xu!21~]yu!2#&. ~31!

Balancing the two parts ofJn against each other will lead t
a solution if the conditional probability

G~D,x2y![^@~]xu!21~]yu!2#uD& ~32!

can be determined. In a purely dissipative system,G can be
determined from a Taylor expansion ofD at small separa-
tions: D>r (]xu), which impliesG52D2/r 2. However, the
presence of convection competes with the smoothing eff
of diffusion and generates higher terms in the Taylor exp
sion of D. Given this fact, a reasonable closure approxim
tion ~which is supported numerically! is

FIG. 1. Second order structure functionsS2(r ) on a log-log plot,
for Lm5200 and four values of the scaling parametery. Smooth
curves are numerical simulation data; straight lines represent
analytic scaling solution in two regimes~inertial and dissipative
ranges!.
e

n

e

e
o
-

i-

ts
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-

G~D,r !5a1
bD

r
1

cD2

r 2 , ~33!

wherea, b, andc are constants. The assumedr dependence
is necessary to generate a solution with regular scaling.

Assuming a regular scaling solution,Sn(r )5Anr n, and
expressing the unknown constants in terms ofA2 ~calculated
above! and A3 ~unknown!, the constantsAn are found to
obey

An5An22A21
A3

A2
An21 . ~34!

Hence all higher order structure functions are expressibl
terms ofS2 and S3 . Unfortunately, no analytic solution fo
S3 has been found. However, in the absence of any spa
asymmetry~which is generated by the gradient forcing us
in this model! the odd-order structure functions would vani
and the solution would be

S2n~r !5S2
n~r !, ~35!

which has regular scaling but non-Gaussian statistics.

IV. NUMERICAL RESULTS

A computational model was created by discretizing t
dynamical equation forT(x). The advective term is handle
straightforwardly, since it is just a rearrangement of the v
ues ofT(x). Diffusion was done subsequent to the advect
process in each time step, using a second-order implicit fi
differences scheme. An overall gradient was applied to g
erate forcing, and periodic boundary conditions for the flu
tuating fieldu(x) were used. The system was evolved to
state of statistical equilibrium before any averaging com
tations were done. Equilibrium was indicated by the est
lishment of stable~analytically known! values of^(]xu)2&
and S2(r ). Structure functions were computed by takin
space-time averages over the entire simulation.

Simulations were conducted in a system with 50 000 g
points and a grid spacing ofdx50.1. The smallest eddy siz
wasL052, permitting a significant dissipative interval. Th
largest eddy size was eitherLm5200 orLm5500, allowing
for inertial range scaling over two orders of magnitude. T
imposed gradient wasg50.01. The eddy scaling exponen
was varied betweeny52.1 andy52.8 for Lm5200, and
betweeny52.1 andy52.4 for Lm5500. The number of
time steps varied between 33107 and 108. A large number
of time steps is needed to suitably average over the eddy
probability distributionP(L), especially for largerLm andy.
In addition, several simulations were conducted with lar
diffusion constantsDt50.02 to study the dissipative rang
solution.

Second order structure functionsS2 have been computed
analytically and can be compared directly with simulati
results. Figure 1 showsS2 as a function ofr on a log-log plot
~basee! for Lm5200 and four values ofy. The smooth
curves show the simulation data~50 data points each!. The
analytic results are shown as two straight lines~one for the
dissipative region, and one for the inertial range!. There are
no free parameters. The agreement is good~within 5% in the
heart of the inertial range! except at the inertial range bound
aries, where the analytic calculation has no validity.

Figure 2 shows higher even-order structure functions o
log-log plot for y52.4 andLm5500. Scaling holds over a

he
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range from approximatelyr 52 to r 5200. Figure 3 shows
the even-order scaling indicesr2n as a function ofn for five
values ofy. The error bars represent the range of obser
values over several simulations with different initial cond
tions. The scaling indices appear to be independent of
upper length scaleLm . The second order indicesr2 lie
within 3% of the theoretical valuesy22. The deviation from
regular scaling (r2n5nr2) is quite pronounced. For largery,
the scaling exponents appear to approach a constant v
~dependent ony! asn increases.

A. Probability distribution functions

Figure 4 shows the probability distribution function forD
on a log-linear scale for several values ofr from the y
52.4, Lm5200 simulation. The core of the PDF, define
roughly byuDu<gLm (gLm52), is peaked. The slight asym
metry between positive and negativeD is due to the imposed
gradient.

In the inertial range the PDF exhibits exponential tails
D@gLm :

FIG. 2. Higher order structure functionsS2n(r ) on a log-log
plot, revealing scaling behavior in the inertial range. Data from
simulation withy52.4 andLm5500.

FIG. 3. Inertial range structure function scaling exponentsr2n

as a function ofn for five values ofy. These simulation data agre
with the analytically known resultr25y22 for n51. The data
suggest that the exponents may approach a constant valuen
→`.
d

e

lue

r

P~D,r !>A~r !e2cuDu ~36!

wherec is independent of the separationr . The exponential
tails have also been derived in another model in a partic
limit @13#. This form of the PDF suggests that, for largen,
the structure function scaling exponentsr2n approach a con-
stant independent ofn. The structure functions obey

S2n

S2n22
5

2n~2n21!

c2 ~37!

in the limit of largen. The PDF’s and the structure function
can both be used to independently estimatec, and the results
are shown in Fig. 5~as a function ofr2!. The two sets of data
represent the two different values ofLm , Lm5200 andLm
5500.

The exponential tails can be understood in terms o
random walk of fluid elements. To generate a particular s
lar differenceD, fluid elements initially separated by a dis

e

s

FIG. 4. Probability distribution functionP(D) of scalar differ-
encesD for three separationsr , from they52.4, gLm52 simula-
tion. The tails (uDu.gLm) of the distribution appear to be expone
tial, with a slope that is independent ofr .

FIG. 5. Slopesc of the tails of the PDFP(D) measured from
simulation data forLm5200 andLm5500. The straight lines rep
resent the Lagrangian random-walk estimate ofc. The dependence
on r2 arises because large eddies become less frequent asr2 in-
creases.
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tance of orderD/g must be brought close together. Since t
largest correlated motion in the system is of sizeLm , scalar
differences larger in magnitude thangLm can only be gener-
ated by the uncorrelated action of several eddies. This be
ior is essentially a random walk, and the multiplication
probabilities leads to the exponential PDF.

To be more quantitative, consider the probability for t
motion of a fluid element along a Lagrangian trajectory fro
position zero to positionx. For simplicity assume that al
eddies are the same sizeL. To move a distancex with (m
21)L<x<mL ~for integer m! will typically require the
point to be moved bym eddies, each carrying it a distance
order L. However, the probability that the point will lie
within a particular eddy isL/L, and these probabilities
multiply

P~x;mL!;S L

L D m

. ~38!

The motion must occur quickly, in~order of magnitude! m
steps, or else diffusion will cause the fluid element to equ
brate with its new environment. By assuming the two poi
involved in constructingD move independently, this prob
ability can be converted to a PDF forD by usingx; D/g
regardless of the separationr . The result is

P~D!;e2cD, ~39!

c[
1

gL
lnS L

L D . ~40!

Assuming that each eddy is of sizeLm suggests estimates o
c51.5 for Lm5200 andc50.5 for Lm5500. These values
are shown as straight lines in Fig. 5, and are in qualita
agreement with the data. Of course, not all eddies are of
Lm ; in fact the number of large eddies decreases asr2 in-
creases. This results in the trend of increasingc shown in
Fig. 5.

Once two fluid elements have come close together, t
become subject to correlated motions. This is presumably
source of ther dependence in the prefactorA(r ) of the ex-
ponential tail. Correlated motions have a weak influence

FIG. 6. Dissipation functionJ2n on a log-log plot, indicating
scaling behavior in the inertial range. Data from the simulation w
y52.4 andLm5500.
v-
f

-
s

e
ze

y
he

n

the PDF tail, and cannot alter its exponential character. A
there is a slight asymmetry betweenD and2D in the pref-
actor; this is attributed to the fact that producing a negativD
requires the two points to pass by each other~in one dimen-
sion!, and during this time their motion is correlated.

B. Kraichnan’s closure ansatz

To test the closure ansatz in@1# and evaluate the constan
Cn , the dissipation functionsJ2n were computed directly
from the simulation data. Rather than use the Laplacian,J2n
was rewritten by commuting derivatives as

J2n~r !52Dt] r
2S2n~r !22n~2n21!Dt

3^D2n22@~]xu!21~]yu!2#&. ~41!

In the limit Dt→0, only the second term on the right sid
remains. In actual simulations, the first term makes a fin
contribution that makes it more difficult to determine th
inertial range scaling. So in practice only the second te
~approximated using finite differences! was used as a surro
gate forJ2n in the inertial range. Figure 6 shows numeric
simulation values forJ2n for the y52.4, Lm5500 simula-
tion. In the inertial range, theJ2n scale with r and have
scaling indicesq2n which, by the closure ansatz, ought
satisfy

q2n5r2n2r2 . ~42!

Figure 7 shows that this part of the closure ansatz holds
plotting q2n versusr2n2r2 for the Lm5500 simulations.

The constants Cn can be computed usingCn
5J2nS2 /nJ2S2n and averaging over the inertial range~Cn is
approximately constant over the region averaged!. The re-
sulting values do not appear to depend on any paramete
the system other thany ~a weak dependence onLm is sus-
pected but not detectable!. Figure 8 shows computed value
for Cn averaged over several simulations. The deviat
from Cn51 is small but significant, contradicting the ansa
of @1#. The growing values ofCn at smallr2 suggest near-
regular scaling in this limit, at least for moderate values ofn.
This is consistent with the scaling exponents in Fig. 3. T

FIG. 7. Inertial range scaling exponentsq2n for the dissipation
functionsJ2n compared to the structure function scaling expone
r2n . Kraichnan’s closure ansatz requiresq2n5r2n2r2 , and the
simulation data are consistent with this result.



n

ta

-

an
e-
n’
r s
e

s

d

on-

-

al
nt

for

d

n-
the
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intermediate caser250.4 lies very close to the Kraichna
prediction of Cn51. For largerr2 , Cn decreases withn,
consistent with the scaling exponents approaching a cons
value ~as in Fig. 3!.

In @2#, the closure ansatz in@1# is derived from an as-
sumption about a conditional probability, namely, that

H~D,x2y![^~]x
21]y

2!D~x,y!uD~x,y!&

5S J2

2DtS2
DD. ~43!

This conditional probabilityH(D,r ) has be computed nu
merically in the simulations. Figure 9 showsH(D) as a func-
tion of D, normalized byJ2/2DtS2 , for r250.1 and both
Lm5200 andLm5500. Two values ofr are shown for each
simulation. The resulting averages lie very close toH(D)
5D for small D, as assumed in@2#. However, they deviate
from the straight line atuDu>2gLm . This is approximately
the point at which correlated motion becomes unimport
and the dynamics are controlled by the ‘‘random walk’’ d
scribed in the previous section. The failure of Kraichna
ansatz appears to be due to the existence of a finite uppe
of the inertial range,Lm , which is much smaller than th
system size. Other values ofr2 exhibit a similar behavior.

C. Dissipative range closure ansatz

The conditional probabilityG(D) needed for closure in
the dissipative range is shown in Fig. 10 for several value
r ~from the simulation withDt50.02!. The conditional
probabilities are well approximated by the parabola

G~D,r !5a1
bD

r
1

cD2

r 2 ~44!

FIG. 8. Closure constants of proportionalityCn , defined by
J2n(r )5nCnJ2 S2n /S2 , from simulation data for severaly. Kraich-
nan’s closure ansatz requiresCn51, which is inconsistent with the
data. For largery, Cn decreases withn, suggesting scaling expo
nents might approach a constant value at largen. For smallery, Cn

increases withn, suggesting near-regular scaling for moderate v
ues of n. Both trends are consistent with the scaling expone
shown in Fig. 3.
nt

t
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with a>431027, b>231023, andc>1.99. These values
are consistent with the independently known values ofA2
andA3 .

The structure functions are given bySn(r )5Anr n, and the
constantsAn are shown in Fig. 11. In addition, the calculate
valuesAn5An22A21 (A3 /A2) An21 are also shown, using
the analytically known value ofA2 and the value ofA3 de-
termined from fittingS3(r ). The deviations from the analytic
solution at largen are possibly due to the neglected termsFn
andL in the equation for the structure functions.

V. CONCLUSIONS

Simulations done using this simple model appear to c
tradict the assumptions made in@1# and@2#. Specifically, the

-
s

FIG. 9. Conditional probability H(D,x2y)[^(]x
2

1]y
2)D(x,y)uD(x,y)& as a function of the scalar differenceD for

two values ofLm and two separationsr 5x2y. Data are taken from
the y52.1 simulations.H is normalized so thatH5D is the Kra-
ichnan ansatz. The ansatz is in good agreement with the data
small values ofD, but the data deviate foruDu.2gLm (g50.01).
This is approximately the largest value ofD that can be generate
by a single large eddy; larger values are exponentially unlikely~see
Fig. 4!.

FIG. 10. Conditional probability G(D,x2y)[^@(]xu)2

1(]yu)2#uD(x,y)& as a function of the scalar differenceD for sev-
eral values ofr in the dissipative subrange. Data from the diffusio
dominated simulation. The parabolic form is consistent with
small-scale closure ansatz proposed in this paper.
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conditional probability studied in@2# is not a linear function
of D, deviating at large values (uDu>2gLm). The deviation
arises because the largest velocity eddy in the system (Lm) is
much smaller than the system size. This finite length sc
effect should cause scaling exponentsr2n to deviate from the
values predicted in@1# for sufficiently largen. The constants
of proportionalityCn proposed in@10# deviate from 1, grow-
ing with n for small r2 but shrinking withn at larger2 ~in
contradiction to the predictions of@11# and also the simula
tions of@12#!. The finite upper length scale induces expone
tial tails in the probability distribution function of scalar di
ferencesD, leading to scaling exponents that approach
constant for sufficiently largen. The ordern at which this
occurs should be controlled by the geometric parametergLm

FIG. 11. Structure function coefficientsA2n as a function ofn
for the dissipative range regular-scaling solution,S2n5A2nr 2n. The
data points were determined by fitting the simulation data. T
straight line is the analytic solution, with the unknown parame
A3 /A2 determined by fitting the numerical data forS3(r ).
er

,

tt
le

-
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and the model parameterr2 . Hence the scaling exponen
would not be universal. Exponential tails and constant sc
ing exponents at largen have also been shown analytically
1D compressible flow in the limitr2→0 @13#.

The separation of length scales~between the largest edd
size and the system size! required for exponential tails in the
scalar difference PDF can be achieved in pipe flow. T
finite diameter of the pipe limits velocity eddies to this siz
while the pipe itself can be much longer~analogous to this
1D model!. Recent experiments on pipe flows@14# have re-
vealed PDF’s of scalar values with exponential tails. No
tempt has been made to study scalar differences, but
arguments of the previous section suggest that expone
tails in the scalar value PDF would imply exponential tails
the scalar difference PDF. If true, this would force structu
function scaling exponents in turbulent pipe flow to approa
a constant~nonuniversal! value at largen.

For a flow in a cube~or similar geometry!, the largest
velocity eddy would be comparable to the system size,
large-scale mixing could occur under the correlated mot
of a single large eddy. Hence the mechanism for genera
exponential tails in the PDF would not exist, and there is
reason to expect that scaling exponentsr2n would approach
a constant at largen. The structure function scaling expo
nents of the passive scalar might therefore be geometry
pendent.
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