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Simple passive scalar advection-diffusion model

Scott Wunsch
The James Franck Institute, The University of Chicago, 5640 South Ellis, Chicago, Illinois 60637
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This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model
exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The
model provides a simple computational test for recent ideas regarding closure and scaling for randomly
advected passive scalars. Results suggest that high order structure function scaling depends on the largest
velocity eddy size, and hence scaling exponents may be geometry dependent and nonuniversal.
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I. INTRODUCTION was previously proposed by myself and othf8$ and is

There has been much interest in the problem of a ranpased on the linear eddy model of Kerstf#l. Restricting
domly advected passive scalar since Kraicﬁnan first pro oset e model to one dimension makes it possible to numerically
Y P Proposeg udy a large range of length scales. The model produces

a solution for the structure functions that exhibit anomalougnixing by randomly rearranging the scalar in such a way as
scaling[1]. The passive scalaf is governed by the usual to induce scaling in the structure functions. Because the pro-

equation, posed closure of thd,, term in[2] is nothing more than a
P truncation of the Taylor expansion of the conditional prob-
(E +u(x,t)-V|T(x,t)=DV?T(x,t)+F(x,t), (1) ability, it should be validif it is valid) regardless of the form

of the operatorZ.

in which D is a diffusion constant anfl is an external forc-
ing. If the velocity field is incompressibleV(- u=0) and the Il. A SIMPLE ONE-DIMENSIONAL MODEL

correlation time is extremely short, the equal time structure o principal goal of this paper is to develop a model that
functions formed from different powers of the scalar dif- g simple enough computationally to permit a large inertial
ferences, defined as range; hence a one-dimensional scalar field is preferable.
However, a one-dimensional incompressible velocity field
= _ n ’

Sa(N)=([T(x+r,t) =T(x,t)]") @ \would be quite dull, so we are forced to choose some other

- form of mixing that preserves the conservation laws that are

obey equations of the form . o . i
yed the hallmark of incompressibility. Any model in which the

£[S,]=J,+F, 3) advection simply rearranges the scalar field meets these re-
quirements, but such advection is necessarily nonlocal.
in Wh|Ch L iS the Richardson eddy_d|ffus|v|ty Operatﬂm is The motivation f0r the partICU|aI’ mOde| | Used IS deVeI'

a forcing term, andJ, is a dissipative term for which an ©oped as follows: Imagine that the one-dimensional scalar
ansatz must be made for closure[ 8, closure was obtained field is embedded in a plane. The convection consists of a
by postulating that the conditional probability of the differ- large eddy in that plane, centered on the scalar field, which
ence of the Laplacians of the passive scalar at two points iEtates one-half turn. This maps the scalar fi€(c) onto
proportional to the difference in the passive scalar value§self, according to the rule

between the points. This leads to even-order structure func-

tions S,,(r), which scale withr, but with scaling indices T(X)—=T(L=x), 4)

that are nonlinear functions ai. However, these results , . 1 ,

have been challenged by others using different techniques #§1€reL is the eddy sizécentered orx=3L). Applying one
obtain scaling indices in certain limits using perturbative© these eddies in each time stepwith randomly chosen
methods [3—-6]. A review of the situation is given by SIZ& and position, along with diffusion, gives a rule for ad-

Shraiman and Siggi&7]. vancing the state of the passive scalar by one time step,
In this paper | study a model for a passive scalar in one B 5
dimension in which the structure functioBs obey statistical T, 1) =T(x,00+V[T(x,0]+ D7, T(x,0) ®)

equations with the same form, but with a different eddy dif-, ) . ]
fusivity operator£. The structure functions exhibit scaling N Which the advection operat{T] is

becausel is still a scaling operat design. The model
g operatofby design T(2%+L—X)—T(X) if Xg<X=<Xo+L,

V[T(x)]= .
[TC0] 0 otherwise.
*Electronic address: swunsch@franck.uchicago.edu (6)
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The model consists of applying this rule many times, with O(x)=T(x)—gx 8
the sizeL and positiornx, chosen randomly at each step from ) i ]
appropriate PDFs. All possible, in the system have equal and structure functions are defined in terms9of
probability, but the eddy sizels are chosen according to a . STRUCTURE FUNCTIONS
scaling law with scaling indey '

P(L)dL—CLYdL - A. Structure function equations
(LydL= ’ @ I now proceed to determine the analog of the eddy-

which generates the scaling behavior within an inertial rangéliffusivity operatorZ for this model, along with the forcing
determined by the smallest and largest possible valugs of function. The scalar differenca(x,y)= 6(x) — 6(y) obeys
Lo<L<L,,. The ratio of length scales,,/L, plays the role the equation
of the Peclet number in this model. L 2. .2 . .

To maintain a state of statistical equilibrium, some forc- A(xy; 1) =D7(di+dy) A(X,y;0) +P[A(X,y;0)]  (9)

ing is required. In this model, the forcing is done by impos-when time is advanced by one unit The action of the
ing an overall gradieng on the scalar, as ifi4]. A new  convective termV on A depends on whetheror y (or both
variable @ is then defined by the deviation from the gradient,lie within the eddy:

[ A(x,y) X,y & [Xo,Xot L]
A(2Xg+L—X,y)+g(L+2Xg— 2X) Xe[Xq,Xot+L],
yé[Xg,Xo+ L]

VAUV A2ty —glL+2x-2y)  xeDxoxotL], (10
ye[Xo.,Xo+L]
L A(2Xp+L =X+ L—y)—29(X—Yy) X,ye[Xo,XotL].
|
Raising this equation to theth power and taking the en- Jn(%Y)=nDHA(X,Y)" HaZ+d)A(XY)) (13

semble average gives
_ | _ as in[1]. The quantity(W"[A(x,y;0)]) can be computed
Sn(x=y; 1) =(VA(Xy;0)]) from the definition of¥ by integrating over the eddy PDFs
DAY A(X,y:0)](2+ d2)A(X,y:0 for xo andL. Defining the difference variable=x—vy, the
nD~ [AGGY:0)](ac+ dy) Alxy ) result divides into three regions: a dissipative interval (
- (11) <L), the inertial rangel{,<r=<L,,), and a large scale re-

gion (r=L,,). The structure functions obey the equation
keeping only the lowest order term 7. In the diffusive

term, we can replaca’[A] with A, because only a small A(S,(r,7)—S,(r,0)+ L[S,(r,0)]
portion of the scalar field lies within the eddy at that time _
step(the eddy is another higher order correciofihen the =Adn(r,0)+Fn(r,0), (14)

equation becomes where A is the system size. In statistical equilibrium

X—y:7)=(PTAX,y:0)])+J (X,y:0), 12 Sa(r,7)=S,(r,0), and this equation is identical in form to
Sixyin=(VTACY0 D+ 3n(xy:0) (12 Eq. (3). The eddy-diffusivity operatorl, and the source
where F.(r) differ according to the value af. Forr<L,, they are

Lm L+r
C[S(r)]E—jL P(L)dL{f_rsz{z)—(r+L)S(r)—(r—L)S(—r)], (15

0 L

n

F ()= grn—memP(L)dL[ fLL

=1 mi(n—m)! J,

rrdzshm<z)<z—r>m+<L—r>snm<—r)<—2r>m]. (16)

In the inertial rangel.o<r<L,,, they are

r+

r L Lm L+r
L[S(r)]E—JL P(L)dLr JrLszz)—ZLS(rﬁ—Jr P(L)dL[f rszz)—(r+L)S(r)—(r—L)S(—r)), (17

L—
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n

Mn1i r r+L
Fn=> —o UL P(L)de 428 m(2)(z—1)"
0 r

m=1 mMi(n—m)! -L

Lm L+r
+f P(L)dL(f dza_m(z)(z—r)m+(L—r)Sn_m(—r)(—2r)m)]. (19
In the large scale regiom=L,,, they are
Lm r+L
L[S(r) E—f P(L)dL{f sz{z)—ZLS(r)}, (19
Lo r-L
B n gmn! Lm r+L Com
Fn(r)=mE:l mn= T fLO P(L)dL[ fr_Ldza_m(z)(z r ] (20)

B. Solution for S,(r)

The first order structure functio®, vanishes, so the low-
est nontrivial structure function iS,. It can be determined
approximately in both the inertial and dissipative ranges. As
a first step, it is necessary to rewrilg by commuting de-
rivatives and using spatial homogeneity:

J,=2D (A (32+32)A) —(1—2)1+P—2(1+p)21+P]] (26)

=2D79?S,— 4D 7((d46)?), (21)

1 1dz
I(p,y)zm‘ fo g[(1+z)1+p—(l—z)1+9

1

dz
—2(1+p)Z]+ jo W[(l‘FZ)lJrP

and can be evaluated numerically. The first integrdl ohi-

. L verges at the lower limit foy>3, setting an upper limit on
whereD 7((d,6)?) is the mean-square dissipation of the sca- 9 y g bb

) X the scaling ranggFory>3 the lower limit must be replaced
lar (a constant This constant can be evaluated by looking at g rangefory P

he | | iofwh h by Lo/r, and the ultraviolet region determines the solution.
the large scale reglo(w eresS, must appgoglc 3a constant  gjnce this term balances a constant, the scaling is fixed at
and balancing it with the forcing terf,= 5g*(L°), so that

p>=Y—2 (which only makes sense fgr>2) and the solu-

5 tion is
(9 6?)2>=E LD g (22) 2
=g Dn Y sr=2 (9L (L)PZ 7
3 (2=p2)l(p2,y) \Lm/
This result serves as a check on the accuracy of numerical o
simulations. where | have evaluated ®) explicitly.

The solution far into the dissipative region<L,) can These solutions foS, compare very well with the nu-
then be evaluated by neglecting bofhand F (settingJ, ~ merical results in both the inertial and dissipative ranges
=0): Fig. ).

. 1 <|_3> ) C. Inertial range scaling for even-order structure functions
Sa(1)=((9x0)")r 6 DTA(gr) ' 23 In the inertial range, the scaling of higher even-order

structure functions is determined in the same wayas
In the inertial range, the approximate solution is found by

balancing the convective terih against the dissipation term LLSan(1)]=Ian(r). (28)
~ 2\ .
Jo=—4D7((x6)"): The closure assumption fds,, made in[1] is that
L[Sy (r)]=—5(L%g (24) S,
Jan(1)=nCuly g (29

By assuming a scaling solutio,(r)=A,r”2, the convec-

tive term becomes with C,=1. The generalized form witlC,#1 was sug-
gested in[10]. Assuming scaling functions fd8,,, with in-
dicesp,,, leads to the result that the scaling indices satisfy

A,L

y
LA rP2]=— y 21 (pa.y)rarey (25)

-1 1(p2n,Y)=NCql (p2.y). (30)

in the limits Ly/r—0 andr/L,—0. The definite integral This result can be use@n principle) to evaluateC,, given
[(p,y) is defined as numerically measuregd,,. Unfortunately, the sensitivity of
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— —— bA CcA?
R G(A,r)=a+T+—rz—, (33

P 1 wherea, b, andc are constants. The assumedependence
is necessary to generate a solution with regular scaling.

Assuming a regular scaling solutioS,(r)=A.r", and
expressing the unknown constants in termégfcalculated
above and A; (unknowr), the constant®\, are found to
obey

y=2.2

[n[Sy(r)]
A

y=2.4 .,

Az
An=An-2Ar+ T An_1. (34)
2

y=2.6.

Hence all higher order structure functions are expressible in

2 ; o 1 2 s v s s terms ofS, and S;. Unfortunately, no analytic solution for
In{r) S; has been found. However, in the absence of any spatial

asymmetry(which is generated by the gradient forcing used

for IT_IG.:12.03e:r?(;\ciool;;dt\elglsjgjscg?hfsnscctgnlﬁlgr) grna?nlog'rlsor%ggt’ﬁ in this mode) the odd-order structure functions would vanish
m 9p o and the solution would be

curves are numerical simulation data; straight lines represent thé
analytic scaling solution in two regimesnertial and dissipative SZH(r)ZSZ”(r), (35
ranges.

which has regular scaling but non-Gaussian statistics.
| to p prevents this from being very accurate. However, the
numerical results for the exponents a@g (measured inde-

pendently are consistent with this result, indicating that the A computational model was created by discretizing the
scaling is indeed set by balancing the convective t&fm dynamical equation fof (x). The advective term is handled

IV. NUMERICAL RESULTS

against the dissipation terdy, . straightforwardly, since it is just a rearrangement of the val-
ues of T(x). Diffusion was done subsequent to the advection
D. Odd-order structure functions process in each time step, using a second-order implicit finite

] o _ ) differences scheme. An overall gradient was applied to gen-

Odd-order structure functions exhibit scaling only in the erate forcing, and periodic boundary conditions for the fluc-
dissipative range. Because the eddy-diffusivity operator tuating field 9(x) were used. The system was evolved to a
differs depending on whether it operates on an odd or evestate of statistical equilibrium before any averaging compu-
function of r, the inertial range scaling solution exists only tations were done. Equilibrium was indicated by the estab-
for even-order structure functions. Odd-order functions ardishment of stablg(analytically known values of{(dy6)?)
positive scaling functions at smal] but pass through zero in and S,(r). Structure functions were computed by taking
the inertial range and then approach zero from below at largepace-time averages over the entire simulation.
r. This behavior of the odd structure functions is peculiar to  Simulations were conducted in a system with 50 000 grid
this particular model and differs from physical passive scaPoints and a grid spacing dix=0.1. The smallest eddy size
lars. wasL =2, permitting a significant dissipative interval. The
largest eddy size was eithep,=200 orL,,=500, allowing
for inertial range scaling over two orders of magnitude. The
imposed gradient wag=0.01. The eddy scaling exponent

At small enough length scales the dissipative terms domiwas varied betweey=2.1 andy=2.8 for L,,=200, and
nate the scaling. In thiglissipative range thel,, term domi- betweeny=2.1 andy=2.4 for L,,=500. The number of

E. Dissipation range scaling

nates the solution. It is convenient to rewrite it as time steps varied betweern3l0’ and 16. A large number
) of time steps is needed to suitably average over the eddy size
In(r)=2D79;Sy(r)—n(n—1)D~ probability distributionP(L), especially for larget ,, andy.

In addition, several simulations were conducted with large
diffusion constant® 7=0.02 to study the dissipative range
solution.

Second order structure functioSs have been computed

X{A" [ (3460)%+ (3,0)%]). (3D

Balancing the two parts af,, against each other will lead to

a solution if the conditional probability analytically and can be compared directly with simulation
) ) results. Figure 1 showS, as a function of on a log-log plot
G(A x—y)=([(3x0)*+(dy0)*]|A) (B2 (basee) for L,,=200 and four values of. The smooth

) o curves show the simulation daa0 data points eaghThe
can be determined. In a purely dissipative systéntan be  analytic results are shown as two straight liiese for the
determined from a Taylor expansion afat small separa- dissipative region, and one for the inertial rangehere are
tions: A=r(d,6), which impliesG=2A?/r2. However, the no free parameters. The agreement is guithin 5% in the
presence of convection competes with the smoothing effectseart of the inertial rangesxcept at the inertial range bound-
of diffusion and generates higher terms in the Taylor expanaries, where the analytic calculation has no validity.
sion of A. Given this fact, a reasonable closure approxima- Figure 2 shows higher even-order structure functions on a
tion (which is supported numericajlys log-log plot fory=2.4 andL,,=500. Scaling holds over a
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FIG. 2. Higher order structure functior$,(r) on a log-log FIG. 4. Probability distribution functio(A) of scalar differ-
plot, revealing scaling behavior in the inertial range. Data from theencesA for three separations, from they=2.4, gL,,=2 simula-
simulation withy= 2.4 andL ,= 500. tion. The tails {A|>gL,,) of the distribution appear to be exponen-

tial, with a slope that is independent of
range from approximately=2 to r=200. Figure 3 shows
the even-order scaling indicgs, as a function oh for five P(A,r)=A(r)e ¢l (36)
values ofy. The error bars represent the range of observed
values over several simulations with different initial condi- wherec is independent of the separationThe exponential
tions. The scaling indices appear to be independent of theils have also been derived in another model in a particular
upper length scald.,. The second order indices, lie  limit [13]. This form of the PDF suggests that, for lange
within 3% of the theoretical valugs— 2. The deviation from  the structure function scaling exponepts, approach a con-
regular scaling §,,=np,) is quite pronounced. For larggr  stant independent af. The structure functions obey
the scaling exponents appear to approach a constant value
(dependent ory) asn increases. S, 2n(2n-1)

2
Sin-2 c

(37

A. Probability distribution functions
in the limit of largen. The PDF’s and the structure functions
can both be used to independently estintatand the results
are shown in Fig. %as a function op,). The two sets of data
represent the two different values bf,, L,,=200 andL,,
=500.

The exponential tails can be understood in terms of a

Figure 4 shows the probability distribution function fvr
on a log-linear scale for several values offrom the y
=2.4, L,=200 simulation. The core of the PDF, defined
roughly by|A|<gL, (gL,=2), is peaked. The slight asym-
metry between positive and negatias due to the imposed

gradient. : ; i
In the inertial range the PDF exhibits exponential tails forrand_om walk of flu!d elements. _Tp_generate a particular sca
Asgl,: lar differenceA, fluid elements initially separated by a dis-
m-
1.4 ! l
35 - 4
y=2.8
2t T Pt % )
3+ -
1 L B % y=26 | o5 L {Lm‘mOData |
% % % % % l i y=2.4 }
0.8 3 -
« : L. ow 1 ©f T
0.6 % © “ { us E 15 { Lum = 200 Random Walk Estimate
[u] y=i
o b b ;
0.4 B . I . . 3 % y=2.1 1+
* © ® ? 05 - T ILM = 700 Data Lm = 500 Random Walk Estimate
el s . o Random Walk Estimate i
° 0 | 1 1 1
0 o é zlt é é 1‘0 12 o 0.2 0.4 0.6 0.8 1
n P2
FIG. 3. Inertial range structure function scaling expongnis FIG. 5. Slopes of the tails of the PDAP(A) measured from

as a function oh for five values ofy. These simulation data agree simulation data fol ,,=200 andL,,=500. The straight lines rep-
with the analytically known resulp,=y—2 for n=1. The data resent the Lagrangian random-walk estimate.oThe dependence
suggest that the exponents may approach a constant valne ason p, arises because large eddies become less frequesy s
—®, creases.
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tance of orde’A/g must be brought close together. Since the o4
largest correlated motion in the system is of dizg, scalar ass |
differences larger in magnitude thath.,, can only be gener-

ated by the uncorrelated action of several eddies. This behav-
ior is essentially a random walk, and the multiplication of oas |
probabilities leads to the exponential PDF.

1

To be more quantitative, consider the probability for the € **[ @’*‘%
motion of a fluid element along a Lagrangian trajectory from ats | gk {
position zero to positiorx. For simplicity assume that all o .
eddies are the same size To move a distanca with (m M e
—1)L=x=mL (for integer m) will typically require the 005 | !

point to be moved byn eddies, each carrying it a distance of
order L. However, the probability that the point will lie
within a particular eddy isL/A, and these probabilities
multiply FIG. 7. Inertial range scaling exponems, for the dissipation
functionsJ,,, compared to the structure function scaling exponents
pon - Kraichnan's closure ansatz requirgs,= p,,— p», and the
simulation data are consistent with this result.

@on

P(x~mL)~(%) . (39)

The motion must occur quickly, iforder of magnitudem  the PDF tail, and cannot alter its exponential character. Also,
steps, or else diffusion will cause the fluid element to equili-there is a slight asymmetry betwednand — A in the pref-
brate with its new environment. By assuming the two pointsactor; this is attributed to the fact that producing a negative
involved in constructingd move independently, this prob- requires the two points to pass by each otfieone dimen-
ability can be converted to a PDF fadr by usingx~ A/g sion), and during this time their motion is correlated.
regardless of the separation The result is

P(A)~e A, (39) B. Kraichnan’s closure ansatz
To test the closure ansatz[ih] and evaluate the constants
A C,, the dissipation functiond,,, were computed directly
)- (400 from the simulation data. Rather than use the Laplaclan,
was rewritten by commuting derivatives as

1

gLIn

¢ L

Assuming that each eddy is of sikg, suggests estimates of
c=1.5 forL,,=200 andc=0.5 for L ,=500. These values
are shown as straight lines in Fig. 5, and are in qualitative X(A2"2(3,0)%+(3,6)2]). (41)
agreement with the data. Of course, not all eddies are of size
Ly, in fact the number of large eddies decreasepa8-  |n the limit D7—0, only the second term on the right side
creases. This results in the trend of increasinghown in  remains. In actual simulations, the first term makes a finite
Fig. 5. contribution that makes it more difficult to determine the
Once two fluid elements have come close together, thejnertial range scaling. So in practice only the second term
become subject to correlated motions. This is presumably theapproximated using finite differendewas used as a surro-
source of ther dependence in the prefactd(r) of the ex-  gate forJ,, in the inertial range. Figure 6 shows numerical
ponential tail. Correlated motions have a weak influence oimulation values fod,, for the y=2.4, L,=500 simula-
tion. In the inertial range, thd,, scale withr and have

Jon(r)=2D73°S,n(r)—2n(2n—1)D 7

) ' ' ' scaling indicesg,,, which, by the closure ansatz, ought to
. HOD satisfy
R ] Q2n=pP2n—P2- (42)
— 2f i Figure 7 shows that this part of the closure ansatz holds, by
3 I plotting q,,, versusp,,— p, for the L,,=500 simulations.
e The constants C, can be computed usingC,
=J3,,S,/nJ,S,, and averaging over the inertial rang@, is
2r 1 approximately constant over the region averagdde re-
It sulting values do not appear to depend on any parameters of
- / 4 .
o the system other thay (a weak dependence dn, is sus-
. ‘ ‘ . . . . . pected but not detectableigure 8 shows computed values
T2 - 0 1 2 3 4 5 6 7 for C,, averaged over several simulations. The deviation

from C,,=1 is small but significant, contradicting the ansatz

FIG. 6. Dissipation functionl,, on a log-log plot, indicating Of [1]. The growing values o€, at smallp, suggest near-
scaling behavior in the inertial range. Data from the simulation withregular scaling in this limit, at least for moderate values of
y=2.4 andL,,=500. This is consistent with the scaling exponents in Fig. 3. The
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n 25 20 -15 -10 5 0 5 10 15 20 25

Sealar Difference (A)

FIG. 8. Closure constants of proportionali§,, defined by
Jon(r)=nCpJ;, S5, /S,, from simulation data for severgl Kraich- FIG. 9. Conditional  probability H(A,x—y)=((d
nan’s closure ansatz requir€s = 1, which is inconsistent with the  +5)A(x,y)|A(x,y)) as a function of the scalar difference for
data. For largey, C, decreases witm, suggesting scaling expo- two values ofL, and two separations=x—y. Data are taken from
nents might approach a constant value at largEor smallety, C,  they=2.1 simulationsH is normalized so thati=A is the Kra-
increases witm, suggesting near-regular scaling for moderate val-ichnan ansatz. The ansatz is in good agreement with the data for

ues ofn. Both trends are consistent with the scaling exponentsmall values ofA, but the data deviate fd\|>2gL, (g=0.01).
shown in Fig. 3. This is approximately the largest value sfthat can be generated

by a single large eddy; larger values are exponentially unliksdg
Fig. 4).
intermediate case,=0.4 lies very close to the Kraichnan 9-4
prediction of C,=1. For largerp,, C, decreases withh,  jith a=4x10"7, b=2x10"3, andc=1.99. These values
consistent with the scaling exponents approaching a constagte consistent with the independently known valueshgf

value (as in Fig. 3. andA,.
In [2], the closure ansatz ifl] is derived from an as- e structure functions are given By(r)=A,r", and the
sumption about a conditional probability, namely, that constantsA,, are shown in Fig. 11. In addition, the calculated

valuesA,=A,_>A,+ (Az/A) A,_, are also shown, using
a2, 2 the analytically known value of\, and the value ofA; de-
H(A, x—y)=((d5+ ) A(X,y)[A(X,y)) termined from fittingS(r). The deviations from the analytic
J, solution at largen are possibly due to the neglected terdms
= ( 2DTSZ)A' (43 and £ in the equation for the structure functions.

V. CONCLUSIONS

This conditional probabilityH(A,r) has be computed nu-  simylations done using this simple model appear to con-

merically in the simulations. Figure 9 shokgA) as a func-  {radict the assumptions madel[it] and[2]. Specifically, the
tion of A, normalized byJ,/2D7S,, for p,=0.1 and both

L,=200 andL,,=500. Two values of are shown for each 20008 - - - - .
simulation. The resulting averages lie very closeH@A)
=A for small A, as assumed if2]. However, they deviate
from the straight line atA|=2gL,,. This is approximately 0.0007 |
the point at which correlated motion becomes unimportant g |
and the dynamics are controlled by the “random walk” de-
scribed in the previous section. The failure of Kraichnan’s ;é”"”s I
ansatz appears to be due to the existence of a finite upper siz- ocos |
of the inertial rangel,,, which is much smaller than the
system size. Other values p§ exhibit a similar behavior.

0.0008

0.0003 -
0.0002 [~

o
0.0001 -

C. Dissipative range closure ansatz

o . .
The conditional probabilityG(A) needed for closure in 0008 0006 0004 0 N
. . . . . . Sealar Difference (A)
the dissipative range is shown in Fig. 10 for several values of
r (from_ .t_he simulation with_Drz 0.02. The conditional FIG. 10. Conditional probability G(A,x—y)=([(,6)?
probabilities are well approximated by the parabola +(0,60)2]|A(x,y)) as a function of the scalar differendefor sev-
CA2 eral values of in the dissipative subrange. Data from the diffusion-
G(A,N)=a+ —+ — (44) dominated simulation. The parabollc_fornj is consistent with the
r r small-scale closure ansatz proposed in this paper.
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FIG. 11. Structure function coefficienss,, as a function o
for the dissipative range regular-scaling solutiBg,=A,,r2". The

and the model parameter,. Hence the scaling exponents
would not be universal. Exponential tails and constant scal-
ing exponents at large have also been shown analytically in
1D compressible flow in the limip,— 0 [13].

The separation of length scalésetween the largest eddy
size and the system sizeequired for exponential tails in the
scalar difference PDF can be achieved in pipe flow. The
finite diameter of the pipe limits velocity eddies to this size,
while the pipe itself can be much long@nalogous to this
1D mode). Recent experiments on pipe floWs4] have re-
vealed PDF’s of scalar values with exponential tails. No at-
tempt has been made to study scalar differences, but the
arguments of the previous section suggest that exponential
tails in the scalar value PDF would imply exponential tails in
the scalar difference PDF. If true, this would force structure
function scaling exponents in turbulent pipe flow to approach
a constantnonuniversgl value at largen.

data points were determined by fitting the simulation data. The For a flow in a cubelor similar geometry, the largest
straight line is the analytic solution, with the unknown parameteryelocity eddy would be comparable to the system size, and

A3 /A, determined by fitting the numerical data f8x(r).

conditional probability studied if2] is not a linear function
of A, deviating at large value§4|=2gL,). The deviation
arises because the largest velocity eddy in the systegh is

large-scale mixing could occur under the correlated motion
of a single large eddy. Hence the mechanism for generating
exponential tails in the PDF would not exist, and there is no
reason to expect that scaling exponesys would approach

a constant at largae. The structure function scaling expo-

much smaller than the system size. This finite length scal@ents of the passive scalar might therefore be geometry de-

effect should cause scaling exponepys to deviate from the
values predicted ifl] for sufficiently largen. The constants
of proportionalityC, proposed irf10] deviate from 1, grow-
ing with n for small p, but shrinking withn at largep, (in

contradiction to the predictions ¢11] and also the simula-

pendent.
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